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The Determination of the Crystallographic Orientation of the Surface of a Hexagonal 
Traces on the Surface all of {10i0} or an of {ill0} Crystal from Data o n  
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An analytical method is developed for evaluating the orientation of a hexagonal crystal surface from 
traces on the surface which are all of {10T0} or all of {1120}. A chart showing this surface orientation 
for various inter-trace angles is produced. 

Introduction 

Features on a crystal surface such as slip lines, twin 
boundaries and edges of plate-shaped precipitates and 
etch pits, which are referred to as traces and which 
mark out the intersections of particular crystallographic 
planes with the crystal surface may be conveniently em- 
ployed to indicate the orientation of the crystal. Bar- 
rett & Massalski (1966) describe a graphic method of 
determining crystal orientation from surface traces 
which consists of rotating relevant poles on a standard 
stereographic projection with the aid of a Wulff net, 
such that they all move into position on diameters of 
an underlying basic circle which are perpendicular to 
the observed trace directions, the new position of the 
poles giving the crystal orientation. The method is in 
principle applicable to any type of crystallographic 
plane which the traces delineate but in practice becomes 
impossibly cumbersome with other than low-multiplic- 
ity planes. Even when dealing with planes of simple 
form the method is quite laborious and inaccurate as it 
involves a trial-and-error process of pinpointing the 
correct rotation of poles. Thus for the more frequently 
encountered types of traces particular procedures have 
been devised to simplify and also to improve the ac- 
curacy of the orientation evaluation. 

Table 1. Methods devised for evaluating crystal 
orientation 

Trace type 

{100} 

{111} 

Mixture of 
{100} and {111 } 

{110) 

Method 
Analytical and Table (Tucker & Murphy, 
1953); Chart (Takeuchi, Honma & Ikeda, 
1959). 
Analytical, Semi-Graphic, and Iterative 
Computer Process (Drazin & Otte, 1963); 
Table (Drazin & Otte, 1964); Chart (Take- 
uchi, Honma & Ikeda, 1959). 
Chart (Takeuchi, Honma & Ikeda, 1959). 

Chart (Tsubaki & Nishiyama, 1960). 

These special procedures consist of either solving 
for the orientation analytically, producing tables or 
charts from which the crystal surface orientation may 
be read off for relevant values of the angles between 
the trace directions, a semi-graphic treatment where 
the loci of relevant poles consistent with the observed 
traces are computed and mapped out on a stereo- 
graphic plot, or employing a computer to work out the 
orientation by an iterative process of successive ap- 
proximations beginning with some initial approximate 
solution. They are all for the case of cubic crystals and 
for delineated planes of simple form. A summary is 
given in Table 1. 

The concern of this paper is the analytical evaluation 
of crystal orientation from observations of surface 
traces either all of {10T0} or all of {11E0} in hexagonal 
crystals. {10T0} traces are known to be produced by 
slip in some hexagonal crystals, e.g. titanium and 
zirconium (Honeycombe, 1968). {1120} traces, to our 
knowledge, have not yet been reported but are never- 
theless considered here as the treatment for this case 
is essentially identical with that for {10T0} traces. 

We shall however be content to show only how 
the orientation of the crystal surface carrying the traces 
(i.e. the crystallographic plane constituting this sur- 
face) may be determined. This is because the crystal- 
surface orientation constitutes the basic information 
for determining the complete crystal orientation. Given 
the former the procedure for determining the latter is 
straightforward and need not be discussed in this 
paper. A chart of crystal-surface orientation against 
inter-trace angles will also be produced. 

Preliminary considerations 

In Fig. 1 plane ABC represents the surface of a hexag- 
onal crystal on which are found traces with directions 
AB, BC, and CA making angles c~, fl, and 7 with one 
another. It is assumed that neither ct, fl, nor 7 is 0 or 
180 °. The traces are all of {10T0} or all of {11E0}. In 
either case AED is a basal plane of the crystal and EB 
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and D C  are [0001] directions. A E D  is therefore an 
equilateral triangle whose sides may, for simplicity, be 
taken to be of unit length. 

Let 

E B = s  , D C = r  , 

f =sin2 fl/sin2 9', g =sin2 ~/sin2 Y, (1) 

h = f - g  + 1 =(sin z f l+s in  2 9 ' -  sin 2 ~)/sin z 9', (2) 

x = 1 + s z . (3) 

We have 

C A  2 1 -b r 2 

A B  2 x 
- . f  , 1 + r  z = f x .  (4) 

Also 

B C  2 1 + ( s -  r) z 

A B  z x 
= g ,  x - 2 r s + r 2 = g x .  (5) 

B 

A - -  . - " D  

Fig. 1. A B C  represents  the crystal surface with observed  traces 
AB,  BC, and CA. A E D  is a basal  plane of  the crystal and 
E B  and  D C  are perpendicular  to AED.  

Equation (4) minus equation (5) gives 

1 - x + 2rs = ( f -  g ) x ,  

2rs = h x -  1 . (6) 

Squaring equation (6) and substituting in the values 
of s 2 and r 2 given by equations (3) and (4) gives 

4 ( f x  - 1) ( x  - 1) = hZx z - 2 h x  + 1 ,  

( 4 f -  h2)x 2-  2(2f+ 2 -  h)x + 3 = 0 .  (7) 

On reference to Blakey (1965) h given in equation (2) 
may also be written as 

h = 2 sin fl cos u/sin 9'. 

With this value of h and with f given by equation (1) 

4 f - h  2 =  4 s in  2 ~ sin 2 f l / s in  2 9'. (8) 

Also, with the help of equations (1) and (2) 

2 f+  2 - h = f + g +  1 

=(sin 2 c~+sin2fl+sin 2 9')/sin 2 9'. (9) 

Substituting equations (8) and (9) into (7) 

4 sin 2 c~ sin2 ft.  x 2 
--2(sin 2 ~+s in  2 f l+s in  z 9')x+3 sin 2 9 '=0 .  

Solving this quadratic equation for x we obtain 

x = s i n  2 9'[& + j l / ( S ~  - 3S2)]/$2 (10) 
where 

$1 = sin 2 cz + sin 2 flq- sin 2 9', (10a) 

$2=4  sin 2 c~ sin 2 fl sin 2 9', (10b) 

j = + l .  

B 

i \ 

A t "" ~ " "  ~ ' ~  ~ \ F 

G 

Fig. 2. Same as Fig. 1 but  with plane A B C  extended to meet  the 
basal  plane A E D  along A F  and to intersect ED extended in 
F. E P  is a normal  to the crystal  surface ABF.  

Evaluation of the crystal-surface orientation 

It will be convenient to define the orientation of the 
crystal surface as (0, <p) where 0 is the angle between 
[0001] and the normal to the crystal surface and (0 the 
angle (made in a clockwise direction about [0001]) 
between [2110] and the projection of the normal onto 
the basal plane (0001). 

Fig. 2 is Fig. 1 redrawn to show the extension of the 
plane A B C  to meet E D  in F and the basal plane along 
A F .  B E G  is a plane perpendicular to A F  and meeting 
A F  in G so that the normal from E to plane A B C  lies 
in B E G  being say E P  in Fig. 2 where P is a point in 
A B F .  By definition BP_.P=O. Let A ~ G = ~ / .  If we are 
dealing with { 10T0} traces we may take E A  to be [2TT0] 
so that t? = ~/. On the other hand if we are dealing with 
{11E0} traces we could take E A  to be [1010] so that 
<p = ~, + 30 °. The crystal-surface orientation (0, ~p) can 
thus be found if we can put 0 and ~, in terms of the 
experimentally measurable quantities c~, fl, and 9'. 

A C 30A - 7 



Letting EF= t and noting that A]~F= 60 °, we have 
from triangle AEF 

sin EffA = sin AEF 

1 1/3 
× l / ( t 2 + l - 2 t  cos A~F) - 21 / ( t2 - t+1)  " 

Considering now triangle EFG, 

GE= t . sin Eff A - 1/3t 

Now 

8 0  o 

21/(t2- t +  1) " 

t =  s .  tan EBF=s / ( s -  r). 
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6 0 "  

Hence 

Is -r l  
cos ~t = GE . . . . . . . . . . .  . 

s - - r  

Also, 

tan 0 = tan BGE = s/GE 

I/3 . s 
21/(s z -  sr + rZ) " 

( l l )  

Is -r l  21/(s2-sr +r 2) 
s----r 1/3 (12) 

The factor I s - r l / ( s - r )  may be dropped from equa- 
tions (11) and (12). This is clear when fl-<7 for then 
I/(1 +s2)/1/(1 +r2)=AB/CA _> 1 so that s>_r and I s - r l /  
( s - r ) =  + 1. If f l> 7 then, reasoning similarly, Is-r[~ 
( s - r ) = - 1 .  In this case omitting the factor I s - r  I/ 
( s - r )  would give rise to 0 and ~u values which are 
supplements of the actual values so that the crystal- 
lographic form of the surface orientation remains un- 
changed. 

Substituting into equation (12) the values of s z, r z, 
and sr as given by equations (3), (4), and (6) and drop- 
ping Is -  r I /(s-  r) we get 

tan 0=(2/|,/3)1/[x - 1 -½-(hx-  1) + f x -  1] 

= I/{(3) [(2f+ 2 - h ) x -  31}. (13) 

40* 

On putting in the values of 2 f+  2 - h  and x as given by 
equations (9) and (10) 

20* 

60  

, l , I , I , I ~ 1 i 
10" 20 ° 

to 
3 0 *  

Fig. 3. Surface orientation-Inter-trace angle chart. The dashed 
curves are lines of constant ~ the value of which is given 
in degrees by the numbers in brackets. The solid curves are 
lines of constant fl the value of which is given in degrees by 
the unbracketed numbers. The e and fl curves are in intervals 
of 4 ° except for values between 56 and 64 °where they are in 
2 ° intervals. To obtain the crystal-surface orientation (0,c0) 
for inter-trace angles of a=ct0 and fl=flo the point on the 
chart lying on both the a=~0 and fl=flo lines is first located 
and the 0 and ~ values for this point (say 00 and ~'0 respec- 
tively) read off from the vertical and horizontal scales. The 
crystal-surface orientation is then (00,~'0) for {10]0} traces 
and (00, q/o+30 °) for {11~0} traces. 

tan O= V{~  [ SI[S~ +J1/(S2- 3]} 

= 1/{(2/3S1) [S~-  3S2 +jS, I/(S~- 3Sz)]}. (14) 

In the same way from equation (11) 

V {  s in2 '[Sl+J| / (S2-3S2)]-S2}"  (15) 
cos v=  ~ " s ~ -  3& +j&-|?(s~- 3&) 

tan 0 may be rewritten as 

tan 0 =  1/{ 21/( , 2 -  3S2 ) 
3S2 

[I/(S~- 3Sz) +jS1] } • 

When j =  - 1 I/(S 2 -  3S2)+jS1 is negative so that tan 0 
becomes imaginary, j = -  1 is therefore unacceptable 
and j may therefore be dropped from equations (14) 
and (15). 

We therefore have now 0 and ~ expressible in terms 
of c~, fl, and ~, so that the crystal-surface orientation 
may be determined analytically from data on the angles 
between surface traces. 

Discussion 

0 and hence also ~u will not exist only for those values 
of a, fl, and 7 for which Sz~-3S2 is negative. Such 
values of the inter-trace angles will therefore not be 
observed in practice. Now 
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S~-3S2 = [S~ + 1/(3S2)1 [S~-1/(3S2)] 

=½1/s2[sl + 1/(3s2)] ( sin 0C 

sinfl  s]-n ), 

sin fl + sin ), _21/3 \ ) 
+ sin ~ sin ? sin ~ sin fl- 

But 

sin 

sin fl sin 7 

Similarly 

sin fl cos y + cos fl sin 
sin fl sin y 

= cot f l+ cot y .  

sin fl 
sin ~ sin ), 

sin y 

sin c~ sin fl 

= cot c~ + cot y ,  

= cot a + cot ft .  

Therefore 

S ~ -  3Sz= 1/$2[S~ + 1/(3Sz)] 
x (cot ~ + cot fl + cot ~ -  1/3). 

It is known that cot a + c o t  f l+co t  y is never less than 
1/3 (Hall & Knight, 1952). $2-3S2 is therefore never 
negative whatever the values of ~, fl, and y. Hence all 
values of the inter-trace angles between 0 and 180 ° 
can be found in practice. 

Further, if two inter-trace angles say a and fl are 
equal then 0 and g /may  be very simply expressed: 

0 = t a n - ~ 1 / ( ½ t a n 2 f l - 1 ) ,  P ' = 9 0 ° i f f l  > 6 0 ° ,  

0 = 0 °, q/= indeterminate value if fl = 60 ° , 

0 = tan-  1 1/(3 cot z f l_  1), p' = 0 ° if fl < 60 ° . 

This is shown in the Appendix. 
Using equations (14) and (15) 0 and ~ may be com- 

puted for various values of c~ and fl (note that ? = 180 ° 
- ~ - f l )  and a chart then drawn showing 0 and g/ for  
the whole range of inter-trace angles. This has been 
done and the chart is produced in Fig. 3 where the 
and fl curves are in 4 ° intervals except for values be- 
tween 56 and 64 ° where 2 ° intervals are employed. 
Since we can always select our inter-trace angles such 
that a < f l <  7 the complete range of inter-trace angles 
will be covered by taking ~ from 0 to 60 ° and fl from 

to 90 ° - a / 2  as has been done in Fig. 3. 
The chart in Fig. 3 serves not only as a quick means 

of obtaining an approximate orientation from surface 
traces but also to indicate the possible magnitude of 
the uncertainty in the orientation for inaccurate trace- 
angle data. It will be seen from the chart that errors in 

or fl will cause more than a fourfold error in the sur- 
face orientation for orientations within about 30 ° of 
0 = 0  ° (the basal orientation) and for orientations close 
to 0 = 9 0  °, ~u=0 ° (which would be {1120} for {10T0} 
traces and {1010} for {l lg0} traces). Near 0 = 9 0  °, 

~ = 3 0  ° ({10T0} and {1120} orientations for {10T0} 
and {1120} traces respectively) errors in fl have small 
effect on the accuracy of the evaluated surface orienta- 
tion. The error in the case of the other evaluated sur- 
face orientations are more or less of the same order 
as the error in the trace angles. 

As mentioned earlier, the determination of the com- 
plete crystal orientation after finding the surface orien- 
tation is a straightforward process. It should however 
be pointed out that although a unique crystal-surface 
orientation is found to arise from a given set of trace- 
angle values the complete crystal orientation is not 
unique. This may be understood on referring to Fig. 1 
where it will be seen that if we relocate D and E on the 
other side of the plane ABC in positions which are 
reflexions of their initial positions in the plane ABC 
the geometry of the resulting figure ABCDE remains 
unchanged so that our solutions for 0 and ~u do not 
differentiate between this and the original configura- 
tion. It follows that for an obtained surface orientation 
one will derive two possible complete crystal orienta- 
tions which are reflexions of each other as seen in the 
crystal-surface plane. This is the general consequence 
of a single-surface trace analysis. 

Conclusion 

If on a surface of a hexagonal crystal a complete set 
of traces all of {10T0} or all of {1120} are observed and 
if c~ and fl are the angles one of the trace directions 
make with the other two as in Fig. 1 then the orienta- 
tion (0, q)) of this crystal surface {where 0 is the angle 
between the normal to the surface and [0001] and ~0 the 
angle between [21-]0] and the projection of the normal 
onto (0001)} may be computed from 

O= tan- l V{  2[S~- & + Sl1/(S~- S3)] } 
& 

]//{3 sin2 (c~ + fl) [Sl +1/(S~- Sa)]- Sa } 
~°=4+c°s-1 2[s~-s~+sl 1/(s~-s3)] 

where 
$1 = sin 2 c~ + sin 2 fl + sin z (~ + fl) ,  

$3 = 12 sin 2 c~ sin 2 fl sin 2 (c~+fl), 

4 =  0 ° if traces delineate {10T0}, 

4 =  30 ° if traces delineate {1120}. 

APPENDIX 

When two inter-trace angles are equal the expressions 
for tan 0 and cos ~, take on very simple forms. Let ~ = 
ft. Then from equations (lOa) and (lOb) 

$1 = 2  sin 2 fl(1 + 2  cos 2 #), 
$2 = 16 sin 6 fl cos 2 f l ,  

A C 3 0 A  - 7* 
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Sx 2 -  3Sz=4 sin 4/3(1 + 4  cos 2 f l+4  cos 4 ]~ 
- 12 sin z fl cos z fl) 

= 4  sin 4 fl(1 - 8 cos z f l+  16 cos a f l ) ,  

1/(Sx2- 3S2) = 2  sin z f i l l - 4  cos z i l l .  

Hence equation (10) with j =  1 gives 

1 + 2  cos z f l + [ 1 - 4  cos zfll 
X :  

2 sin z fl 

=1  iffl>_60 o 

= 3 cot z fl if fl < 60 ° . 

We thus have from equation (13) 

tan 0 =  1/{-} [ sin2Sl~xy - 3 ] }  

= ]//{3z [ ( 1 + 2  c°szfl 
2 COS2 fl ) x - 3 ] }  

=l/(½ tan z f l - 1 ) i f  f l>60  ° 

=1/(3 c o t 2 f l - 1 ) i f f l < 6 0  ° . 

Also 

cos ~,=s/ tan 0 =  l / ( x -  1)/tan 0 

= 0  i f f l > 6 0  ° 

=1 i f f l < 6 0  ° 

= indeterminate value if fl = 60 ° . 
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